Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
1.
Stem Cell Res ; 76: 103374, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458031

RESUMO

The NR2F2 gene encodes the transcription factor COUP-TFII, which is upregulated in embryonic mesoderm. Heterozygous variants in NR2F2 cause a spectrum of congenital anomalies including cardiac and gonadal phenotypes. We generated heterozygous (MCRIi030-A-1) and homozygous (MCRIi030-A-2) NR2F2-knockout induced pluripotent stem cell (iPSC) lines from human fibroblasts using a one-step protocol for CRISPR/Cas9 gene-editing and episomal-based reprogramming. Both iPSC lines exhibited a normal karyotype, typical pluripotent cell morphology, pluripotency marker expression, and the capacity to differentiate into the three embryonic germ layers. These lines will allow us to explore the role of NR2F2 during development and disease.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Coração , Heterozigoto , Homozigoto , Fenótipo , Sistemas CRISPR-Cas/genética , Fator II de Transcrição COUP/genética , Fator II de Transcrição COUP/metabolismo
2.
Gene ; 897: 148106, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38128789

RESUMO

In the poultry industry, excessive abdominal fat deposition is not conducive to meat quality. Therefore, selection for optimal fat content levels in poultry has become a major breeding goal. We previously constructed NR2F2 overexpression (NR2F2OE) and knockout (NR2F2Δ/Δ/83-125aa) cell lines using Piggybac and CRISPR/Cas9 techniques, and confirmed that the transcription factor NR2F2 can significantly inhibit the differentiation of avian preadipocytes. In this study, we identified a downstream gene ZNF423 regulated by NR2F2, which is also involved in regulating avian fat deposition. First, we performed transcriptome analysis of the NR2F2-edited lines, which has been proven to be an inhibitor of avian fat deposition in our previous studies. Our findings revealed that NR2F2 affects a series of candidate regulators related to adipogenesis. Among these, we focused on ZNF423, which was significantly down-regulated in the NR2F2OE cell line and up-regulated in the NR2F2Δ/Δ/83-125aa cell line. Next, dual luciferase reporter assay results showed that the DNA-binding domain (DBDΔ72-143aa) of transcription factor NR2F2 may negatively affect the expression of downstream target gene ZNF423 by binding to its distal promoter region (-2356 to -2346). Moreover, we constructed a function analytical model and found that overexpression of ZNF423 significantly facilitated the differentiation of adipocytes in immortalized chicken preadipocytes (ICP1). Consistent with these findings, global transcriptome analysis of the ZNF423-overexpressed cell line (ZNF423OE) further demonstrated that the process of adipogenesis was significantly enriched. These results indicate that ZNF423 is a positive regulator of avian adipocyte differentiation. Overexpression of ZNF423 in the NR2F2OE cell line compensated for the inhibition of fat deposition phenotype, further suggesting that ZNF423 is a downstream target gene of NR2F2. These findings uncover a novel function of ZNF423 in avian adipocyte differentiation and analyzed the transcriptional regulation by its upstream transcription factor NR2F2. Additionally, we identified a list of functional candidate genes, providing important insights for further research on the mechanism of avian fat deposition.


Assuntos
Adipócitos , Fator II de Transcrição COUP , Regulação da Expressão Gênica , Fatores de Transcrição , Adipócitos/metabolismo , Adipogenia/genética , Diferenciação Celular/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Galinhas , Fator II de Transcrição COUP/genética , Fator II de Transcrição COUP/metabolismo
3.
Eur J Hum Genet ; 31(10): 1117-1124, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37500725

RESUMO

Nuclear receptor subfamily 2 group F member 2 (NR2F2 or COUP-TF2) encodes a transcription factor which is expressed at high levels during mammalian development. Rare heterozygous Mendelian variants in NR2F2 were initially identified in individuals with congenital heart disease (CHD), then subsequently in cohorts of congenital diaphragmatic hernia (CDH) and 46,XX ovotesticular disorders/differences of sexual development (DSD); however, the phenotypic spectrum associated with pathogenic variants in NR2F2 remains poorly characterized. Currently, less than 40 individuals with heterozygous pathogenic variants in NR2F2 have been reported. Here, we review the clinical and molecular details of 17 previously unreported individuals with rare heterozygous NR2F2 variants, the majority of which were de novo. Clinical features were variable, including intrauterine growth restriction (IUGR), CHD, CDH, genital anomalies, DSD, developmental delays, hypotonia, feeding difficulties, failure to thrive, congenital and acquired microcephaly, dysmorphic facial features, renal failure, hearing loss, strabismus, asplenia, and vascular malformations, thus expanding the phenotypic spectrum associated with NR2F2 variants. The variants seen were predicted loss of function, including a nonsense variant inherited from a mildly affected mosaic mother, missense and a large deletion including the NR2F2 gene. Our study presents evidence for rare, heterozygous NR2F2 variants causing a highly variable syndrome of congenital anomalies, commonly associated with heart defects, developmental delays/intellectual disability, dysmorphic features, feeding difficulties, hypotonia, and genital anomalies. Based on the new and previous cases, we provide clinical recommendations for evaluating individuals diagnosed with an NR2F2-associated disorder.


Assuntos
Anormalidades Múltiplas , Cardiopatias Congênitas , Hérnias Diafragmáticas Congênitas , Deficiência Intelectual , Animais , Humanos , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/diagnóstico , Fator II de Transcrição COUP/genética , Cardiopatias Congênitas/genética , Hérnias Diafragmáticas Congênitas/genética , Deficiência Intelectual/genética , Hipotonia Muscular , Síndrome
4.
J Neurochem ; 165(5): 660-681, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36648143

RESUMO

Schwann cells (SCs) are known to produce myelin for saltatory nerve conduction in the peripheral nervous system (PNS). Schwann cell differentiation and myelination processes are controlled by several transcription factors including Sox10, Oct6/Pou3f1, and Krox20/Egr2. Chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII/NR2F2) is an orphan receptor that plays a role in the development and differentiation. However, the role of COUP-TFII in the transcriptional regulatory network of SC differentiation has not been fully identified yet. Thus, the objective of this study was to investigate the role and molecular hierarchy of COUP-TFII during cAMP-induced SC differentiation. Our results showed that dibutyryl-cAMP (db-cAMP) increased expression levels of COUP-TFII along with the expressions of Oct6, Krox20, and myelin-related genes known to be related to SC differentiation. Our mechanistic studies showed that COUP-TFII acted downstream of Hsp90/ErbB2/Gab1/ERK-AKT pathway during db-cAMP-induced SC differentiation. In addition, we found that COUP-TFII induced Krox20 expression by directly binding to Krox20-MSE8 as revealed by chromatin immunoprecipitation assay and promoter activity assay. In line with this, the expression of COUP-TFII was increased before up-regulation of Oct6, Krox20, and myelin-related genes in the sciatic nerves during early postnatal myelination period. Finally, COUP-TFII knockdown by COUP-TFII siRNA or via AAV-COUP-TFII shRNA in SCs inhibited db-cAMP-induced SC differentiation and in vitro myelination of sensory axons, respectively. Taken together, these findings indicate that COUP-TFII might be involved in postnatal myelination through induction of Krox20 in SCs. Our results present a new insight into the transcriptional regulatory mechanism in SC differentiation and myelination.


Assuntos
Fator II de Transcrição COUP , Proteína 2 de Resposta de Crescimento Precoce , Células de Schwann , Animais , Ratos , Diferenciação Celular , Células Cultivadas , Fator II de Transcrição COUP/genética , Fator II de Transcrição COUP/metabolismo , AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Bainha de Mielina/metabolismo , Células de Schwann/citologia , Células de Schwann/metabolismo , Nervo Isquiático/metabolismo , Proteína 2 de Resposta de Crescimento Precoce/metabolismo
5.
Int J Clin Oncol ; 27(12): 1891-1903, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36269529

RESUMO

BACKGROUND: Multiple studies have revealed that long non-coding RNA (lncRNA) NR2F2-AS1 plays a role in affecting cancer cell proliferation and metastasis. Here, both in vitro and in vivo experiments were performed for investigating the function and mechanism of NR2F2-AS1 in human osteosarcoma (OS). METHODS: The NR2F2-AS1 level in human OS tissues and adjacent non-tumor tissues was examined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The NR2F2-AS1 overexpression model was constructed in OS cells, then cell proliferation, invasion, and apoptosis were monitored. The OS xenograft model was established in nude mice using NR2F2-AS1-overexpressed OS cells. The downstream target genes of NR2F2-AS1 were predicted. qRT-PCR and Western blot were implemented to validate the profiles of miR-425-5p and HMGB2. The targeting link between NR2F2-AS1 and miR-425-5p, miR-425-5p and HMGB2 was further probed by dual-luciferase reporter experiment. RESULTS: In comparison to adjacent non-tumor tissues, OS tissues showed upregulated NR2F2-AS1 expression. Higher NR2F2-AS1 level was predominantly correlated with worse clinical stages. In vivo and in vitro tests corroborated that NR2F2-AS1 overexpression spurred OS cell proliferation, growth, invasion, and choked apoptosis. Mechanistically, NR2F2-AS1 hampered miR-425-5p expression as its competitive endogenous RNA (ceRNA). Thus, NR2F2-AS1 facilitated the HMGB2 expression. However, miR-425-5p inhibited HMGB2 expression by targeting the latter. CONCLUSION: NR2F2-AS1 expedited the evolution of OS by elevating HMGB2 levels through sponging miR-425-5p. The NR2F2-AS1/miR-425-5p/HMGB2 regulatory axis is a promising target in treating human OS.


Assuntos
Neoplasias Ósseas , Proteína HMGB2 , MicroRNAs , Osteossarcoma , RNA Longo não Codificante , Animais , Humanos , Camundongos , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Fator II de Transcrição COUP/genética , Fator II de Transcrição COUP/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Proteína HMGB2/genética , Proteína HMGB2/metabolismo , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Osteossarcoma/genética , Osteossarcoma/patologia , RNA Longo não Codificante/genética , Fatores de Transcrição/genética
6.
Mediators Inflamm ; 2022: 8373389, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36081650

RESUMO

Diabetes is well recognized to increase the risk of heart failure, which is associated with higher mortality and morbidity. It is important for the development of novel therapeutic methods targeting heart failure in diabetic patients. Ferroptosis, an iron-dependent regulated cell death, has been implicated in the progression of diabetes-induced heart failure (DIHF). This study was designed to investigate the contribution of Nr2f2 to the activation of ferroptosis and mitochondrial dysfunction in DIHF. We established a diabetic model by a high-fat feeding diet combined with an intraperitoneal injection of streptozotocin. After 16 weeks, Nr2f2 expression was increased in heart tissue of DIHF mice. In vivo, DIHF mice overexpressing Nr2f2 (AAV9-cTNT-Nr2f2) exhibited severe heart failure and enhanced cardiac ferroptosis compared with DIHF control mice (AAV9-cTNT-ctrl), accompanied by mitochondrial dysfunction and aggravated oxidative stress reaction. In vitro, Nr2f2 knockdown ameliorated ferroptosis and mitochondrial dysfunction by negatively regulating PGC-1α, a crucial metabolic regulator. PGC-1α knockdown counteracted the protective effect of Nr2f2 knockdown. These data suggest that Nr2f2 promotes heart failure and ferroptosis in DIHF by modulating the PGC-1α signaling. Our study provides a new idea for the treatment of diabetes-induced heart failure.


Assuntos
Fator II de Transcrição COUP , Diabetes Mellitus , Ferroptose , Insuficiência Cardíaca , Animais , Fator II de Transcrição COUP/genética , Fator II de Transcrição COUP/metabolismo , Diabetes Mellitus/metabolismo , Insuficiência Cardíaca/metabolismo , Camundongos , Mitocôndrias/metabolismo , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Transdução de Sinais
7.
Andrology ; 10(7): 1411-1425, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35973717

RESUMO

BACKGROUND: Leydig cells produce testosterone and insulin-like 3, two hormones essential for male sex differentiation and reproductive function. The orphan nuclear receptor, chicken ovalbumin upstream promoter transcription factor type II (COUP-TFII), and the zinc finger factor GATA4 are two transcription factors involved in Leydig cell differentiation, gene expression, and function. OBJECTIVES: Several Leydig cell gene promoters contain binding motifs for both GATA factors and nuclear receptors. The goal of the present study is to determine whether GATA4 and COUP-TFII cooperate to regulate gene expression in Leydig cells. MATERIALS AND METHODS: The transcriptomes from GATA4- and COUP-TFII-depleted MA-10 Leydig cells were analyzed using bioinformatic tools. Functional cooperation between GATA4 and COUP-TFII, and other related family members, was assessed by transient transfections in Leydig (MA-10 and MLTC-1) and fibroblast (CV-1) cell lines on several gene promoters. Recruitment of GATA4 and COUP-TFII to gene promoters was investigated by chromatin immunoprecipitation. Co-immunoprecipitation was used to determine whether GATA4 and COUP-TFII interact in MA-10 Leydig cells. RESULTS: Transcriptomic analyses of GATA4- and COUP-TFII-depleted MA-10 Leydig cells revealed 44 commonly regulated genes including the anti-Müllerian hormone receptor type (Amhr2) gene. GATA4 and COUP-TFII independently activated the Amhr2 promoter, and their combination led to a stronger activation. A GC-rich element, located in the proximal Amhr2 promoter was found to be essential for GATA4- and COUP-TFII-dependent activation as well as for the COUP-TFII/GATA4 cooperation. COUP-TFII and GATA4 directly interacted in MA-10 Leydig cell extracts. Chromatin immunoprecipitation revealed that GATA4 and COUP-TFII are recruited to the proximal Amhr2 promoter, which contains binding sites for both factors in addition to the GC-rich element. Cooperation between COUP-TFII and GATA6, but not GATA1 and GATA3, was also observed. DISCUSSION AND CONCLUSION: Our results establish the importance of physical and functional cooperation between COUP-TFII/GATA4 in the regulation of gene expression in MA-10 Leydig cells, and more specifically the Amhr2 gene.


Assuntos
Fator II de Transcrição COUP , Fator de Transcrição GATA4 , Células Intersticiais do Testículo , Receptores de Fatores de Crescimento Transformadores beta , Animais , Fator II de Transcrição COUP/genética , Fator II de Transcrição COUP/metabolismo , Extratos Celulares , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Insulina/biossíntese , Células Intersticiais do Testículo/metabolismo , Masculino , Camundongos , Regiões Promotoras Genéticas/genética , Proteínas , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Testosterona/biossíntese
8.
Hum Cell ; 35(5): 1355-1363, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35796938

RESUMO

Long non-coding RNA (LncRNA) is a new type of non-coding RNA whose transcription is more than 200 nucleotides in length and can be up to 100 kb. The crucial regulatory function of lncRNAs in different cellular processes is now notable in many human diseases, especially in different steps of tumorigenesis, making them clinically significant. This research tried to collect all evidence obtained so far regarding Nuclear Receptor subfamily 2 group F member 2 Antisense RNA 1 (NR2F2-AS1) to explore its role in carcinogenesis and molecular mechanism in several cancers. Collecting evidence value an oncogenic role for NR2F2-AS1, whose dysregulation changes the status for cancerous cells to gain the supremacy toward cellular proliferation, dissemination, and ultimately migration. The NR2F2-AS1 acts as competitive endogenous RNA (ceRNA) and contains several microRNA response elements (MREs) for different microRNAs involved in various pathways such as PI3K/AKT, Wnt/ß-catenin, and TGF-ß. This clinically makes NR2F2-AS1 a remarkable lncRNA which contributes to cancer progression and invasion and perhaps could be a candidate as a prognostic marker or even a therapeutic target.


Assuntos
MicroRNAs , RNA Longo não Codificante , Fator II de Transcrição COUP/genética , Fator II de Transcrição COUP/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , RNA Antissenso , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
9.
Reproduction ; 164(2): 31-40, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35666805

RESUMO

In brief: The insulin-like 3 (INSL3) hormone produced by Leydig cells is essential for proper male sex differentiation, but the regulation of Insl3 expression remains poorly understood. This study describes a new physical and functional cooperation between the nuclear receptors SF1 and COUP-TFII in Insl3 expression. Abstract: INSL3, a hormone abundantly produced by Leydig cells, is essential for testis descent during fetal life and bone metabolism in adults. The mechanisms regulating Insl3 expression in Leydig cells have been studied in several species but remain poorly understood. To date, only a handful of transcription factors are known to activate the Insl3 promoter and include the nuclear receptors AR, NUR77, COUP-TFII, and SF1, as well as the Krüppel-like factor KLF6. Some of these transcription factors are known to transcriptionally cooperate on the Insl3 promoter, but the mechanisms at play remain unknown. Here, we report that COUP-TFII and SF1 functionally cooperate on the Insl3 promoter from various species but not on the Inha, Akr1c14, Cyp17a1, Hsd3b1, Star, Gsta3, and Amhr2 promoters that are known to be regulated by COUP-TFII and/or SF1. The Insl3 promoter contains species-conserved binding sites for COUP-TFII (-91 bp) and SF1 (-134 bp). Mutation of either the COUP-TFII or the SF1 sequence had no impact on the COUP-TFII/SF1 cooperation, but the mutation of both binding sites abolished the cooperation. In agreement with this, we found that COUP-TFII and SF1 physically interact in Leydig cells. Finally, we report that the transcriptional cooperation is not limited to COUP-TFII and SF1 as it also occurred between all NR2F and NR5A family members. Our data provide new mechanistic insights into the cooperation between the orphan nuclear receptors COUP-TFII and SF1 in the regulation of Insl3 gene expression in Leydig cells.


Assuntos
Fator II de Transcrição COUP , Insulina , Células Intersticiais do Testículo , Proteínas , Fator Esteroidogênico 1 , Adulto , Sítios de Ligação , Fator II de Transcrição COUP/genética , Fator II de Transcrição COUP/metabolismo , Humanos , Insulina/genética , Insulina/metabolismo , Células Intersticiais do Testículo/metabolismo , Masculino , Regiões Promotoras Genéticas , Proteínas/genética , Fator Esteroidogênico 1/genética , Fator Esteroidogênico 1/metabolismo , Testículo/metabolismo
10.
Int J Oncol ; 60(5)2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35348189

RESUMO

The expression of the nuclear receptor transcription factor (TF) COUP­TFII is broadly associated with cell differentiation and cancer development, including of pancreatic ductal adenocarcinoma (PDAC), a devastating disease with one of the poorest prognoses among cancers worldwide. Recent studies have started to investigate the pathological and physiological roles of a novel COUP­TFII isoform (COUP­TFII_V2) that lacks the DNA­binding domain. As the role of the canonical COUP­TFII in PDAC was previously demonstrated, the present study evaluated whether COUP­TFII_V2 may have a functional role in PDAC. It was demonstrated that COUP­TFII_V2 naturally occurs in PDAC cells and in primary samples, where its expression is consistent with shorter overall survival and peripheral invasion. Of note, COUP­TFII_V2, exhibiting nuclear and cytosolic expression, is linked to epithelial to mesenchymal transition (EMT) and cancer progression, as confirmed by nude mouse experiments. The present results demonstrated that COUP­TFII_V2 distinctively regulates the EMT of PDAC and, similarly to its sibling, it is associated with tumor aggressiveness. The two isoforms have both overlapping and exclusive functions that cooperate with cancer growth and dissemination. By studying how PDAC cells switch from one isoform to the other, novel insight into cancer biology was gained, indicating that this receptor may serve as a novel possible target for PDAC management.


Assuntos
Fator II de Transcrição COUP/genética , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Carcinoma Ductal Pancreático/genética , Transição Epitelial-Mesenquimal , Humanos , Camundongos , Receptores Nucleares Órfãos , Neoplasias Pancreáticas/genética , Isoformas de Proteínas/genética
11.
Histol Histopathol ; 37(6): 575-585, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35048354

RESUMO

Gastric cancer is among the most frequently occurring gastrointestinal malignancies with a high mortality rate worldwide. Long non-coding RNAs (lncRNAs) are defined as core regulators in the occurrence and progression of multiple cancers, including gastric carcinoma. Mounting evidence has indicated that NR2F2-AS1 can inhibit several malignant tumors. However, the function and potential mechanism of NR2F2-AS1 remain unclear. In the current study, we found that NR2F2-AS1 was weakly expressed in gastric cancer cells in comparison with normal cells. The study has further disclosed that ectopic of NR2F2-AS1 repressed cell proliferation, migration, invasion and EMT whereas it promoted cell apoptosis in gastric carcinoma. Subsequently, our results confirmed that miR-320b was negatively regulated and that suppression of miR-320b alleviated the malignant behaviors of GC cells. More importantly, PDCD4 was a target of miR-320b. Mechanistically, NR2F2-AS1 modulated the expression level of PDCD4 by sponging miR-320b. Finally, rescue assays demonstrated that NR2F2-AS1 down-regulated PDCD4 expression to restrain the development of gastric cancer by competitively binding to miR-320b. On the whole, our study revealed the role of NR2F2-AS1/miR-320b/PDCD4 regulatory network in gastric cancer, suggesting NR2F2-AS1 may represent a novel therapeutic target for patients with gastric carcinoma.


Assuntos
Carcinoma , MicroRNAs , RNA Longo não Codificante , Neoplasias Gástricas , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Fator II de Transcrição COUP/genética , Fator II de Transcrição COUP/metabolismo , Carcinoma/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Neoplasias Gástricas/patologia
12.
J Periodontal Res ; 57(2): 316-323, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34910830

RESUMO

BACKGROUND AND OBJECTIVE: This study aimed to investigate the correlation between chronic periodontitis (CP) and abnormal circular RNA (circRNA) expression and to identify the role of hsa_circ_0003948 in the progression of CP. METHODS: Next-generation sequencing was utilized to investigate abnormal expression of circRNA in gingival tissues from CP patients and healthy control subjects. Bioinformatics and luciferase reporting analyses were used to clarify the interactive relationship among circRNA, miRNA, and mRNA. Periodontal ligament cells (PDLCs) were employed to analyze proliferation and apoptosis after lipopolysaccharide (LPS) treatment using the cell counting kit 8 (CCK8) assay and flow cytometry detection. RESULTS: High-throughput sequencing and RT-qPCR analyses confirmed that hsa_circ_0003948 expression decreased dramatically in gingival samples of CP patients. Overexpression of hsa_circ_0003948 alleviated LPS-induced PDLC injury by regulating NR2F2/PTEN signaling. The miR-144-3p and NR2F2 were determined to be hsa_circ_0003948 downstream targets. NR2F2 downregulation or miR-144-3p overexpression reversed the protective effect of hsa_circ_0003948 in PDLCs after treatment with LPS. Upregulation of NR2F2 reversed the inhibitory effect of miR-144-3p on surviving PDLCs after LPS treatment. CONCLUSION: Overexpression of hsa_circ_0003948 exerts a protective effect in CP via miR-144-3p/NR2F2/PTEN signaling regulation.


Assuntos
Fator II de Transcrição COUP , Periodontite Crônica , MicroRNAs , PTEN Fosfo-Hidrolase , RNA Circular , Apoptose/genética , Fator II de Transcrição COUP/genética , Fator II de Transcrição COUP/metabolismo , Proliferação de Células/genética , Periodontite Crônica/genética , Periodontite Crônica/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , PTEN Fosfo-Hidrolase/genética , RNA Circular/genética , RNA Circular/metabolismo
13.
Am J Surg ; 223(1): 182-186, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34315577

RESUMO

BACKGROUND: To identify genes associated with congenital diaphragmatic hernia (CDH) to help understand the etiology and inform prognosis. METHODS: We performed exome sequencing on fetuses with CDH and their parents to identify rare genetic variants likely to mediate risk. We reviewed prenatal characteristics and neonatal outcomes. RESULTS: Data were generated for 22 parent-offspring trios. Six Likely Damaging (LD) variants were identified in five families (23 %). Three LD variants were in genes that contain variants in other CDH cohorts (NR2F2, PTPN11, WT1), while three were in genes that do not (CTR9, HDAC6, TP53). Integrating these data bolsters the evidence of association of NR2F2, PTPN11, and WT1 with CDH in humans. Of the five fetuses with a genetic diagnosis, one was terminated, two underwent perinatal demise, while two survived until repair. CONCLUSIONS: Exome sequencing expands the diagnostic yield of genetic testing in CDH. Correlating CDH patients' exomes with clinical outcomes may enable personalized counseling and therapies.


Assuntos
Fator II de Transcrição COUP/genética , Hérnias Diafragmáticas Congênitas/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteínas WT1/genética , Exoma/genética , Feminino , Feto/anormalidades , Feto/diagnóstico por imagem , Testes Genéticos/métodos , Testes Genéticos/estatística & dados numéricos , Hérnias Diafragmáticas Congênitas/diagnóstico , Humanos , Masculino , Gravidez , Ultrassonografia Pré-Natal
14.
Arch Oral Biol ; 134: 105316, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34896865

RESUMO

OBJECTIVE: This study aimed to investigate the role of lncRNA NR2F2-AS1 in oral squamous cell carcinoma cells (OSCC). MATERIALS AND METHODS: The TCGA datasets were used to explore the differential expression of NR2F2-AS1 in OSCC. To further explore the potential interaction between NR2F2-AS1 and miR-494, SCC090 cells were transfected with the NR2F2-AS1 expression vector, NR2F2-AS1 siRNA, and a miR-494 mimic. The effect of NR2F2-AS1 on miR-494 methylation was evaluated by performing methylation-specific PCR (MSP). Cell Counting Kit-8 (CCK-8) assay was used to assess the effects of NR2F2-AS1 silencing and miR-494 and NR2F2-AS1 overexpression on OSCC cell proliferation. RESULTS: NR2F2-AS1 expression was downregulated in OSCC and positively correlated with miR-494 expression. In OSCC cells, NR2F2-AS1 overexpression upregulated miR-494 level, while NR2F2-AS1 silencing decreased miR-494 expression. MSP results showed that NR2F2-AS1 overexpression decreased miR-494 methylation while NR2F2-AS1 silencing increased miR-494 methylation. In addition, NR2F2-AS1 silencing increased OSCC cell proliferation rate while overexpression of miR-494 and NR2F2-AS1 decreased OSCC cell proliferation. Furthermore, miR-494 overexpression attenuated the effects of NR2F2-AS1 silencing on cell proliferation. CONCLUSION: NR2F2-AS1 may inhibit miR-494 methylation to regulate cell proliferation in OSCC. AVAILABILITY OF DATA AND MATERIALS: The analyzed data sets generated during the study are available from the corresponding author upon reasonable request.


Assuntos
Neoplasias de Cabeça e Pescoço , MicroRNAs , Neoplasias Bucais , RNA Longo não Codificante , Fator II de Transcrição COUP/genética , Carcinoma de Células Escamosas , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Metilação , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Bucais/genética , RNA Longo não Codificante/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço
15.
Nat Commun ; 12(1): 5932, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635656

RESUMO

Domestic ducks are raised for meat, eggs and feather down, and almost all varieties are descended from the Mallard (Anas platyrhynchos). Here, we report chromosome-level high-quality genome assemblies for meat and laying duck breeds, and the Mallard. Our new genomic databases contain annotations for thousands of new protein-coding genes and recover a major percentage of the presumed "missing genes" in birds. We obtain the entire genomic sequences for the C-type lectin (CTL) family members that regulate eggshell biomineralization. Our population and comparative genomics analyses provide more than 36 million sequence variants between duck populations. Furthermore, a mutant cell line allows confirmation of the predicted anti-adipogenic function of NR2F2 in the duck, and uncovered mutations specific to Pekin duck that potentially affect adipose deposition. Our study provides insights into avian evolution and the genetics of oviparity, and will be a rich resource for the future genetic improvement of commercial traits in the duck.


Assuntos
Adipogenia/genética , Proteínas Aviárias/genética , Fator II de Transcrição COUP/genética , Patos/genética , Genoma , Lectinas Tipo C/genética , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Proteínas Aviárias/classificação , Proteínas Aviárias/metabolismo , Cruzamento , Fator II de Transcrição COUP/metabolismo , Domesticação , Casca de Ovo/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Lectinas Tipo C/metabolismo , Metabolismo dos Lipídeos/genética , Masculino , Anotação de Sequência Molecular , Mutação , Zigoto/metabolismo
16.
Eur J Med Genet ; 64(12): 104347, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34619368

RESUMO

We present a case with congenital syndromic asplenia associated with immune deficiency, glandular hypospadias and cryptorchidism. Genetic analysis identified a likely pathogenic de novo variant in NR2F2. Pathogenic NR2F2 variants have been associated with other congenital anomalies affecting the central axis, such as congenital heart disease and diaphragmatic hernia, which were not part of our patient's clinical features. The association between NR2F2 and asplenia (including glandular hypospadias and cryptorchidism) has been described in animal models and our report is the first expanding the NR2F2 clinical spectrum in humans to include asplenia.


Assuntos
Fator II de Transcrição COUP/genética , Variação Genética/genética , Síndrome de Heterotaxia/genética , Criança , Humanos , Masculino , Fenótipo
17.
Elife ; 102021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34545809

RESUMO

Nearly 50 different mouse retinal ganglion cell (RGC) types sample the visual scene for distinct features. RGC feature selectivity arises from their synapses with a specific subset of amacrine (AC) and bipolar cell (BC) types, but how RGC dendrites arborize and collect input from these specific subsets remains poorly understood. Here we examine the hypothesis that RGCs employ molecular recognition systems to meet this challenge. By combining calcium imaging and type-specific histological stains, we define a family of circuits that express the recognition molecule Sidekick-1 (Sdk1), which include a novel RGC type (S1-RGC) that responds to local edges. Genetic and physiological studies revealed that Sdk1 loss selectively disrupts S1-RGC visual responses, which result from a loss of excitatory and inhibitory inputs and selective dendritic deficits on this neuron. We conclude that Sdk1 shapes dendrite growth and wiring to help S1-RGCs become feature selective.


Assuntos
Sinalização do Cálcio , Dendritos/metabolismo , Imunoglobulina G/metabolismo , Proteínas de Membrana/metabolismo , Plasticidade Neuronal , Células Ganglionares da Retina/metabolismo , Sinapses/metabolismo , Visão Ocular , Percepção Visual , Animais , Fator II de Transcrição COUP/genética , Fator II de Transcrição COUP/metabolismo , Potenciais Pós-Sinápticos Excitadores , Feminino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Imunoglobulina G/genética , Potenciais Pós-Sinápticos Inibidores , Masculino , Proteínas de Membrana/genética , Camundongos Knockout , Inibição Neural , Estimulação Luminosa , Sinapses/genética , Fatores de Tempo , Fator de Transcrição Brn-3C/genética , Fator de Transcrição Brn-3C/metabolismo , Vias Visuais/metabolismo
18.
Biol Reprod ; 105(5): 1283-1306, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34225363

RESUMO

In males, Leydig cells are the main producers of testosterone and insulin-like 3 (INSL3), two hormones essential for sex differentiation and reproductive functions. Chicken ovalbumin upstream promoter-transcription factors I (COUP-TFI/NR2F1) and COUP-TFII (NR2F2) belong to the steroid/thyroid hormone nuclear receptor superfamily of transcription factors. In the testis, COUP-TFII is expressed and plays a role in the differentiation of cells committed to give rise to fully functional steroidogenic adult Leydig cells. Steroid production has also been shown to be diminished in COUP-TFII-depleted Leydig cells, indicating an important functional role in steroidogenesis. Until now, only a handful of target genes have been identified for COUP-TFII in Leydig cells. To provide new information into the mechanism of action of COUP-TFII in Leydig cells, we performed microarray analyses of COUP-TFII-depleted MA-10 Leydig cells. We identified 262 differentially expressed genes in COUP-TFII-depleted MA-10 cells. Many of the differentially expressed genes are known to be involved in lipid biosynthesis, lipid metabolism, male gonad development, and steroidogenesis. We validated the microarray data for a subset of the modulated genes by RT-qPCR. Downregulated genes included hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1 (Hsd3b1), cytochrome P450, family 11, subfamily a, polypeptide 1 (Cyp11a1), prolactin receptor (Prlr), nuclear receptor subfamily 0, group B, member 2 (Shp/Nr0b2), ferredoxin 1 (Fdx1), scavenger receptor class B, member 1 (Scarb1), inhibin alpha (Inha), and glutathione S-transferase, alpha 3 (Gsta3). Finally, analysis of the Gsta3 and Inha gene promoters showed that at least two of the downregulated genes are potentially new direct targets for COUP-TFII. These data provide new evidence that further strengthens the important nature of COUP-TFII in steroidogenesis, androgen homeostasis, cellular defense, and differentiation in mouse Leydig cells.


Assuntos
Fator II de Transcrição COUP/genética , Regulação da Expressão Gênica , Células Intersticiais do Testículo/metabolismo , Transdução de Sinais , Animais , Fator II de Transcrição COUP/metabolismo , Linhagem Celular , Masculino , Camundongos
19.
Front Immunol ; 12: 670777, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34084171

RESUMO

A unique immunotolerant microenvironment with Th2 bias in the decidua provides an essential security for successful pregnancy. The disorganized maternal-fetal immune tolerance contributes to more than 50% of unexplained recurrent spontaneous abortion (RSA). How the Th2 bias is developed at the maternal-fetal interface remains undefined. NR2F2, a member of steroid/thyroid nuclear receptor superfamily, is endowed with diverse importance in cell-fate specification, organogenesis, angiogenesis, and metabolism. Here, we showed that NR2F2 was absolutely highly expressed in decidual CD4+T(dCD4+T) cells, but not in peripheral circulating CD4+T cells during early pregnancy. Decidual NR2F2-expressing CD4+T cells dominantly produced Th2 cytokines. In unexplained RSA patients, NR2F2 expression in dCD4+T cells was significantly decreased, accompanied with disordered phenotype of dCD4+T cells. Furthermore, overexpression of NR2F2 promoted the Th2 differentiation of naive CD4+T cells. Immunoprecipitation experiment confirmed the binding relationship between GATA-3 and NR2F2, which implied GATA-3 may be an important interactive element involved in the immunoregulatory process of NR2F2. This study is the first to reveal a previously unappreciated role for NR2F2-mediated dCD4+T cells in maternal-fetal immune tolerance and maintenance of normal pregnancy, in the hope of providing a potential biomarker for prediction and prevention of clinical unexplained RSA.


Assuntos
Aborto Habitual/imunologia , Fator II de Transcrição COUP/metabolismo , Decídua/imunologia , Células Th1/imunologia , Células Th2/imunologia , Adulto , Antígenos CD4/metabolismo , Fator II de Transcrição COUP/genética , Diferenciação Celular , Citocinas/metabolismo , Feminino , Fator de Transcrição GATA3 , Humanos , Tolerância Imunológica , Gravidez , Adulto Jovem
20.
Int J Mol Sci ; 22(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070923

RESUMO

Increasing numbers of miRNAs have been observed as oncogenes or tumor suppressors in colorectal cancer (CRC). It was recently reported that hsa-miR-106b-5p (miR-106b) promoted CRC cell migration and invasion. However, there were also studies showing contradictory results. Therefore, in the present study, we further explore the role of miR-106b and its downstream networks in the carcinogenesis of CRC. We observed that the expression of miR-106b is significantly increased in Pan-Cancer and CRC tissues compared with normal tissues from The Cancer Genome Atlas (TCGA) database. Furthermore, we used Transwell, Cell Counting Kit-8, and colony formation assays to clarify that miR-106b promotes the migratory, invasive, and proliferative abilities of CRC cells. For the first time, we systematically screened the target mRNAs and lncRNAs of miR-106b using TCGA database and the bioinformatics algorithms. Dual-luciferase reporter assay confirmed that NR2F2-AS1 and PLEKHO2 are the direct targets of miR-106b. Furthermore, NR2F2-AS1 acts as a competing endogenous RNA (ceRNA) to regulate PLEKHO2 expression by sponging miR-106b. The results of Gene set enrichment analysis (GSEA) and Western blot indicated that they play important roles in CRC progression by regulating MAPK pathway. Thus, miR-106b/NR2F2-AS1/PLEKHO2/MAPK signaling axis may suggest the potential usage in CRC treatment.


Assuntos
Fator II de Transcrição COUP/genética , Carcinogênese/genética , Neoplasias Colorretais/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Atlas como Assunto , Sequência de Bases , Sítios de Ligação , Fator II de Transcrição COUP/metabolismo , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica , Genes Reporter , Células HCT116 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Luciferases/genética , Luciferases/metabolismo , Sistema de Sinalização das MAP Quinases , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...